Search for resonant WZ Production with the ATLAS detector at the LHC

Joany Manjarrés

DPG Würzburg
March 21, 2018
Resonance searches are well motivated

- Resonances represent the simplest way to discover new particles
- A statistically significant bump above a smooth background
 - experimentally robust
 - small systematics
 - difficult for unknown backgrounds to mimic
- Model-independent probe to new physics
- Predicted in many beyond SM scenarios with different properties (charge, spin, width, production mechanism)
High mass diboson searches are well motivated

- Resonances represent the simplest way to discover new particles
- A statistically significant bump above a smooth background
 - experimentally robust
 - small systematics
 - difficult for unknown backgrounds to mimic
- Model-independent probe to new physics
- Predicted in many beyond SM scenarios with different properties (charge, spin, width, production mechanism)

Resonance benchmarks you will hear about in this talk
- Heavy Vector Triplets or **HVT** (simplified Lagrangian): Model A \(g_V = 1 \) and Model B \(g_V = 3 \)
- Georgi-Machacek (GM) Higgs Triplet Model: \(H^+_5 \)
- Extended gauge model (EGM): with a spin-1 \(W' \) boson
Search strategy

- Choose a WZ decay mode
- Design a selection
- Estimate the background
- Reconstruct invariant mass
- Set limits on BSM theories
WZ decay modes

Hadronic decays:
- Larger branching fractions
- More backgrounds from QCD/multijet events (→ boson tagging!)

Leptonic decays:
- Small branching fractions
- Clean signature, low background

Fully leptonic decay
- Experimental signature:
 - 3 high p_T, isolated leptons,
 - Missing transverse energy ($E_{T\text{miss}}$)

Backgrounds:
- Non resonant WZ
- Z+jets, Top, Z+γ, ZZ, and VVV
Search strategy

- Choose a WZ decay mode
- Design a selection
WZ object and event selection

Motivation:

- High efficiency 3 leptons in final state
- Reduce background from jet, Z+jet, QCD, tt and single top
- Reduce ZZ background
- Reduce non peaking backgrounds like tt and single top, WW+jets
- Reduce the Z+jets and Top background
- To account for the W and reduce Z+jets

Single lepton trigger

- High p_T leptons ($p_T > 25$ GeV) in detector acceptance
- Leptons must come from primary vertex. Impact parameter cuts $|d_0/\sigma_{d_0}|$
- Calorimeter and track isolation used
- Only 3 good leptons (additional 20 GeV leptons)
- Pair of same flavor, opposite sign, high p_T isolated leptons. Consistent with a Z boson in a ± 20 GeV window.
- If more than one pair, select the closest to Z mass

Additional tight lepton requirement

- $E_T^{\text{miss}} > 25$ GeV
Signal optimization

- Improve the sensitivity to resonant signals, some additional selections can be added, for example:
 - $\Delta y(W, Z) < 1.5 \rightarrow$ remove SM background
 - $\Delta \phi(\ell, E_{T}^{\text{miss}})$ is used to define 2 signal regions (SR)
 - Low Mass SR: $\Delta \phi(\ell, E_{T}^{\text{miss}}) < 1.5$
 - High Mass SR: $\Delta \phi(\ell, E_{T}^{\text{miss}}) > 1.5$

ATLAS 8 TeV

$\Delta y(W, Z)$

Data/Bkg

Events / 0.2

$\Delta \phi(\ell, E_{T}^{\text{miss}})$

ATLAS

$\sqrt{s} = 8 \text{ TeV}, \int L dt = 20.3 \text{ fb}^{-1}$

$E_{T}^{\text{miss}} > 25 \text{ GeV}: \text{All channels combined}$

$\Delta y(W, Z) < 1.5$: All channels combined
Signal optimization

- Improve the sensitivity to resonant signals
- some additional selections can be added, for example:
 - $\Delta y(W, Z) < 1.5 \rightarrow$ remove SM background
 - $\Delta \phi(\ell, E_{T}^{miss})$ is used to define 2 signal regions (SR)
 - Low Mass SR: $\Delta \phi(\ell, E_{T}^{miss}) < 1.5$
 - High Mass SR: $\Delta \phi(\ell, E_{T}^{miss}) > 1.5$
 - L_T the scalar sum of the leptons p_T cut value changing depending on m_{WZ}

arXiv:1407.3476
Signal optimization

- Improve the sensitivity to resonant signals
- Some additional selections can be added, for example:
 - $\Delta y(W, Z) < 1.5 \rightarrow$ remove SM background
 - $\Delta \phi(\ell, E_{T}^{\text{miss}})$ is used to define 2 signal regions (SR)
 - Low Mass SR : $\Delta \phi(\ell, E_{T}^{\text{miss}})<1.5$
 - High Mass SR : $\Delta \phi(\ell, E_{T}^{\text{miss}})>1.5$
 - L_T the scalar sum of the leptons p_T cut value changing depending on m_{WZ}
 - The ratio between the boson p_T and the m_{WZ} mass
 - p_T^W / m_{WZ} and p_T^Z / m_{WZ}
Search strategy

- Choose a WZ decay mode
- Design a selection
- Estimate the background
Background estimation

- Accurate background estimate to not bias signal extraction
- Two techniques
 - background shape from simulation and normalize in control region + theory/experimental systematic
 - ex. ATLAS WZ control region:
 - $\Delta y(W, Z)$ requirement reversed \rightarrow reduce signal contamination
 - $\Delta \phi(\ell, E_{\text{miss}})$ is removed

arXiv:1406.4456
Background estimation

- Accurate background estimate to not bias signal extraction

- Two techniques

 - background shape from simulation and normalize in control region + theory/experimental systematic

 - parameterize the background shape and fit directly on data

 - ex. ATLAS 8 TeV to estimate the background at high mass analysis 2 fits were performed
 1. WZ bkg with \(m_{WZ} > 500 \text{ GeV} \)
 2. non-WZ bkg with \(m_{WZ} > 300 \text{ GeV} \)

 - The power-law function \(N(x) = c_0 x^{c_1} \), where \(x \) is \(m_{WZ} \)
Search strategy

- Choose a WZ decay mode
- Design a selection
- Estimate the background
- Reconstruct invariant mass
Mass reconstruction

- Mass reconstruction and resolution crucial in resonance searches
 - statistical power inversely proportional to the mass resolution
 - resonance hidden by bad understanding of resolution

- Need ad-hoc studies and calibration strategies at such large momenta
Mass reconstruction

- Mass reconstruction and resolution crucial in resonance searches
 - Statistical power inversely proportional to the mass resolution
 - Resonance hidden by bad understanding of resolution
- In the $X \rightarrow WZ \rightarrow \ell\nu\ell\ell$ channel the incomplete invariant mass reconstruction due to the missing neutrino the p_Z information
 - Use the $\ell\nu\ell\ell$ transverse mass information
 - Ex. CMS result at 13 TeV for the H^+_{5}

arXiv:1705.02942
Mass reconstruction

- Mass reconstruction and resolution crucial in resonance searches
 - statistical power inversely proportional to the mass resolution
 - resonance hidden by bad understanding of resolution

- In the $X \rightarrow WZ \rightarrow \ell\nu\ell\ell$ channel the complete invariant mass reconstruction is not possible due to the missing neutrino the p_Z information
 - Use the $\ell\nu\ell\ell$ transverse mass information
 - Assume a W on-shell and solve the equation to obtain the neutrino p_Z information
 - several solutions are possible → optimization based on resolution (~10% at 1 TeV)
8 TeV Results

Low Mass signal region

High Mass signal region

Low Mass SR: $\Delta \phi(\ell, E_{T}^{miss})<1.5$

High Mass SR: $\Delta \phi(\ell, E_{T}^{miss})>1.5$

arXiv:1406.4456
Choose a WZ decay mode

Design a selection

Estimate the background

Reconstruct invariant mass

Set limits on BSM theories
Limits on BSM theories

- Limits are extracted by using a binned Fit of the WZ invariant mass shape
 - All lepton decay are combined
 - The systematics uncertainties are included in the fit being the SM WZ background the dominant one

- For $m < 400$ GeV, the two SR are combined to maximize the sensitivity of the search. For $m > 400$ GeV, only the High Mass SR is used.

A mass limit of 1.52 TeV is derived for the W'
The 13 TeV big picture

\[\sigma(pp \to W^+ W^-) \text{ [pb]} \]

ATLAS Preliminary
\(\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \)

95% C.L. exclusion limits

- HVT model B \(g_v = 3 \)
- Observed
- Expected
- qqqq
- lvqq
- llqq
- vvqq

lvll, llqq
- Low mass region \(\to \) good resolution
- High mass region \(\to \) statistically limited

lvqq
- Good sensitivity in wide mass region

vvqq:
- Low mass region \(\to \) bad mass resolution
- High mass region \(\to \) high statistics

qqqq:
- Low mass \(\to \) QCD background
- High mass \(\to \) Jet related uncertainties

ATLAS exotics public results
Summary

- Search for heavy resonances in the dibosons channels is one of the most direct ways to find new physics
- New results and more Run-2 data are coming! Stay tune…
Backup